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ABSTRACT 

A system that approximates the performance of tht optimum processor 
(optimum in the sense of maximizing array gain) is presented. Consisting 
of manytwi.-element subsystems, the system is called a binary array proc- 
essor (BAP). The two main advantages of the BAP system ate that: (1) It 
should be easier to implement than the optimum processor because inver- 
sion of large matrices is not tequired; and (2) It should not suffer from 
errors made in the statistical estimation of cross-spectral densities of the 
noise field because the system adapts against such errors.These advantages 
are obtained at the expense of a few db of array gain, but a sample calcu- 
lation illustrates that the array gain of the BAP system can still be signifi- 
cantly greater than that obtained by conventional time-shift-and-sum 
beam formation. 

ADMINISTRATIVE INFORMATION 

This study was performed  under USL Project No.   1-412-00-00 and 
Navy Subproject and Task No. S 101 03 16-11224. 

■A 

REVIEWED AND APPROVED:      17 Jonuary 1968 

J^/^W, 
H. E. Na»h 

Technical Director 



TABLE OF CONTENTS 

Page 

INTRODUCTION      ..... .....                   i 

DISCUSSION            .....                    1 

ANALYSIS OF THE BAP SYSTEM  . 4 

SAMPLE CALCULATION     ....  10 

CONCLUSIONS   12 

INITIAL DISTRIBUTION LIST Inside Back Cover 

Figure 

1 

2 

LIST OF ILLUSTRATIONS 

Configuraiion of Optimum Processor .... 

Configuration of Binary Array Processor        .... 

\rray Processor for Case when Input Cross- Spectral Density 
\ Is Toephtz ....... 

derivation of QB 
12 

i/ii 



A SUBOPTIMUM APPROACH 
TO ADAPTIVE ARRAY PROCESSING 

INTRODUCTION 

The application of optimum space-time processing theory requires the 
inversion of a matrix containing,  N2   elements at each frequency, where N 
is the number of hydrophones in the array. Such matrix inversion introduces 
two serious problems:   (1) The implementation of an optimum system would 
involve an impractical amount of hardware; and (2) Since the largest gains 
from the optimum processor are obtained when the matrix approaches singu- 
larity, any errors in the statistical estimates of the matrix elements could 
have a drastic effect on the inverse matrix. Even the inverse of an extremely 
well-conditioned matrix could be affected severely by estimation errors be- 
cause of the large number of multiply/add operations involved in its 
calculation. 

This report presents a suboptimum scheme that should not suffer from 
measurement error because the system adapts against estimation errors it 
has made. Furthermore, the largest matrix the system must invert is a 
2x2 matrix (such inversion is trivial), and hence the system should be much 
easier to implement than the optimum processor.  The only constraint on the 
suboptimum system is that the number of hydrophones in the array must be 
some power of  2. 

DISCUSSION 

We first assume that the array has been electronically steered so that 
the desired signal is identical at each input. In the straightforward approach 
to optimum array processing, a linear filter is placed in each channel (Fig, 1), 
and then the question is asked, "What must the transfer functions of these 
filters be in order to maximize the array gain?" The required mathematical 

•M^H^B^H 
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Fig. 1 - Configuration of Optimum Processor 

calculations then yield the optimum complex weights'  at each frequency: 

Z = Q-' « , (1) 

where 
Z  is an N x 1 column vector of the optimum weights, 

Q  is an N x N matrix of the cross-spectral densities between inputs 
(after steering), and 

A system that approximates the performance of the optimum processor is 
shown in Fig.  2.   Consisting of many two-element subsystems, the system is 
called a binary array processor (BAP),  The BAP is constrained in that the 
number of hydrophones must be some power of 2 ,   but for many applications 
this constraint is not a serious one. 

lD. J. Edclblute,   ]. M. Fisk,   and G. L. Kinnison,   "Criteria for Üptimum-Signal-Detection 
Theory for Arrays," Journal of the Acoustical Society of America, vol. 41, no. 1, January 1967, 

pp. 199-205, 

. 
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The BAP system operates in the following manner:   First the subset of 
filters  | Z,; [ ,   where  i = 1, 2, • ■ • , 2M   and  M = log2 N , is determined by 
treating each two-element subsystem separately, according to Eq,  (1), After 
these filters have been determined and their outputs have reached a steady- 
state condition, the subset | Z2i |,   i = 1, 2, • • • .   2(M-1),   is determined in the 
same fashion. The procedure is repeated for the subset JZ,, |,   i = 1, 2, • • • , 
2<M-2),   and so on until all the filters have been determined. An important fea- 
ture of the BAP system is now evident. Since the filters  |Z . |   are designed 
after the filters ) Z,^ ,   they adapt against errors in the latter set caused by 
incorrect statistical estimates of cross-spectral densities. Similarly, the fil- 
ters | Z 3i|   adapt against errors made in determining the filters  { Z2i},   and 
so on. 

Another important feature of the BAP system is that it never requires 
inversion of a large matrix; many 2x2 matrices must be inverted,  but the 
operations Involved are trivial. Hence the BAP system should be orders of 
magnitude simpler to implement than the optimum system. 

ANALYSIS OF THE BAP SYSTEM 

Although it is possible to analyze the BAP system for the general case, we 
can simplify the analysis greatly by assuming that the input-noise cross- 
spectral density matrix, in addition to being Hermitian, is a Toeplitz matrix, 
that is,   it has equal elements along any diagonal.  Only this special case,  for 
which the transfer functions of the filters in each binary subsystem are complex 
conjugates, is examined in this report. Many filters have identical transfer 
functions, as given by the following relation: 

Zki " ZMi+2) k = 1,2,..-, [M-l] 

i - 1,2,-.., [2(M-l«+l>-2l 

Figure 3 shows the BAP processor configuration for the special case under 
consideration. 
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Fig, 3 - Binary Array Proressor for Caie when Input Croa-Spectral Density Matrix Is Toeplitz 

Before proceeding further with the analysis, we must present the notation 
that will be used for all cross-spectral density matrices. At the input,  i. e., 
just before the filters j Z,;!,   we have: 

QA = 

QA,,       • • • QA1(2M) 

0\2»)1 *  * ' QA(2M)(2M) 

and just before the filters  |Z2i|, 



go 

QB 
11 ■ •  • QB jjiM-l) 

QB(2M-l)i  •  •  • QB(2M-1)(2M-1) 

The matrix of spectra preceding the filters  | Z }i|   is QC,   and so on. 

Analysis of the BAP system proceeds as follows. Given QA,  the filters 
JZ^}  are determined, and then the matrix QB is found; similarly the fil- 
ters  JZ JI   and the matrix QC are determined. The process continues until 
the power spectrum of the final output stage is known. The array gain can then 
be calculates after this same procedure is repeated using the same filters with 
signal (instead of noise) cross-spectral density matrices. 

When QA is a Hermitian, Toeplitz matrix, the filters JZ .}   are all deter- 
mined once  Z      is known, and  Z,,  is found by solving the following matrix 
equation: 

11 

11 

QA..    QA 

QA 12 QA 

-1 r  -i 

12 1 

11 1 
J 

Now since QB is also a Hermitian, Toeplitz matrix, it is necessary only 
to find QB,!, QB^, QB,,, • • ■ , QB,,^.^ in order to determine QB. The 
element   QB,,   is given by the following expression from linear system theory^ 

QB11 = QAlllZ11i
2 + QA1/i;+QA21ZJ1.QA22|z;i|

2 

2
J. Bcndat and A. Piersol, Measurement and Analysn of Random Data, John Wiley and Sons, 

N. Y.,   1966,  Eq. :M66, P-  108. "~~      " 



With the use of the relations 

and 

we reduce this equation to 

^,, = 2^,,    /.,, IRc^QA^z]] (2) 

The elemen' QB12 is derived here because no expression is readily avail- 
able in the literature.   In Fig. 4 the filters of the first four channels are 

NA, (♦1     O—^in(t) 

NA2l») mil» I—^ 

NB,  (f) 

NA3(f)       Q—[7n( 

NA4(f)       O- 

I'"*"  I Sy-v      NB2(f) 

Fig. 4 - Derivation of OB^ 

represented by their impulse responses instead of their transfer functions. 
The functions   NA^t).    NA2(t).   NA,(t),    NA4(t).    NB^t),   and   NB2<t)are 
noise timt functions.   The expressions for   NB^t)   and   NB2(t)   are 

and 
f NB1(t)=   \    lzll{a)NAl(t-o) + zll(a)SAJ(t-o)] da 

NB2(t)=   I    [211(p)NA}(t-p) + zI2(p)NA4(t-p)l dp 



and the cross-correlation function between these two functions is 

RB12(T) - NB^ONBjd + T)  , 

where the bar denotes statistical averaging. Substitution of the expressions for 
NB^t)   and   NB2(t)   into this equation gives 

"X        (X) 

RB12{T)-  I    f [z11(o)NA1(t-ff) + 212(ff)NA2(t-o)llz,l(p)NAj{t-p + T)+212(p)NA4(t-p+T)] dodp 

RB 

no DC 

(T) = 1     I lz1I(a)z11(p)RA1,(T +o-p)+z12(o)z11(p)RA2,('+a-p) 

+ z u(a)z l2(p) Ru (T + a - p) + z 12(a)z 12(p) RA 24(T + o - p)l do dp 

where 

RA n(T+ a- p) = NAjd - a)NA3(i - p + T) 

RA 2}(T + o - p) = NA2(i - a)NA j(t - p * r) 

RA14(T + o- p) = NA^t - a)NA4(t - p + T) ,    and 

RA24(T + o- p) = NA2(t-(7)NA4(t - p+ T) 

The Fourier transform of  RB,2(T)   is the quantity we desire: 

QB12=   (    RB, '--^(T 
\2 (T) e" 

Substituting the previously given expression for   RB^T)   into the above integral 
and multiplying and dividing the integrand by   e-^n^a-p) yields 



nc       no       iL 

gB f    f     f    zn(o)t:'2vlc'zJi(p)e-'2",pRAli(T + o.p)e-i2T'HT*°-',) dadpdr 12 

- no   ~- ot>   ""-no 

OO rtO ^ 

f    f    f    zl2{o)e>2^"zn{f>)e-'2"fcRA2i(r > o-p)e-'2n((Tt°-p) dadpdr 

__0«J      JX>       _oo 

z11(f7)e|2M'T
Zl2(p)e-i2r,f'?RA14(7 + o - p) t''2nHr * ^ ' p) dadpdr 

-no      -oo     -O' 

oo       ao       nc 

f    f    f   ^2(^«>,2T'f^12(p)t":7rf^RA24(T + (7-p)e-|27Tf(T+a-^ dadpdr 
-oo     -oo     -oo 

which reduces to 

QB12 = Z*1(f)Zn(f)QAH + z;2(f)Zn(f)QA23 

. /.^(OZ^COQA,, fZ*2(f)Z1j(f)QA24 

Now since 
Z12(f)     Z^f). 

QA,,     QA12 . 
and 

QA24      QA13. 

the element   QB       becomes 

QBl2    ZQA.jlZ,,!2  ^QAI2Zfl + QA14Z^   • 

The expressions for QBJJ , QBU , etc. are obtained from the following 
general expression, which was derived by changing subscripts in the preceding 
derivation; 

a  ■  M 



Thus all the elements of the matrix   QB   can be determined. In fact, we can 
now determine the entire BAP system simply by changing subscripts and varia- 
ble names.  For example, the filters    jz2i}   are found in the same manner as 
the filters   jZjJ ,   the only difference being that elements of QB   are used in- 
stead of elements of QA.    Similarly, the elements of  QC   are obtained from 
the same expressions used for   QB  simply by changing all the A's to B's and 
all the   B's   to  C's.   These procedures are repeated until all the filters are 
determined and the value of the output-noise power spectral density is found. 
Then the same filters and equations with noise cross-spectra replaced by 
signal cross-spectra are used to find the value of the output-signal power spec- 
tral density. Array gain is then computed by dividing the ratio of signal power 
spectral density to noise power spectral density at the output by the same ratio 
at an input reference hydrophone. 

SAMPLE CALCULATION 

Consider a linear array oriented vertically in a surface-generated noise 
field and having four elements. The following expression,3    which has been 
normalized with respect to a selected input reference quantity  QA,, .   defines 
the elements of the matrix QA : 

QA     =2 
sin ^mn       cos ß* 

ßmn (ße 

,„ -  1 I I sin ß   „      cos ß I 

In this expression, 

"mn ■A% 
is the distance bi-rween the  mth and n ih receivers in feet,   and 

is the wavelength in feet . 

'B. F. Cron and C. H. Sherman, "Addendum: Spatial-Correlation Functions for Various 
Noise Models," Journal of the Acoustical Society of America, vol. 38, no. 5, November 1965, 

p. 885. 

10 



Since we want  QA  to be Toeplitz, let   ^„A   be constant for all   (m,n).    For 
d    /A = 0. 3,   the elements that specify the matrix QA are: 

QA,,     l.o, 

and 

yA12 - 0.272 - j(0.864)    0.006 j-llA0   . 

QA,, . -().V,8 - |(0.347)    0.667/211.4°  . 

QAM = -0.22 + j(0.323)    0.3')] /l24.20     . 

The filters   {z,^   can all be found from   Z,,,   which is given by 

/.,, - QA,, -QA12     0.728 . )(0.864) = 1.13/40.8°   . 

The matrix QB   is determined once   QB,,   and   QB,2  are known, and they are 
found from   Eqs,  (2) and (3): 

Q« 
• 2 

l l 2QA,, ,/.,, 2 i 2Rc [QAU Z,,  1 - 0.26 

and 
QB,,     ZQA.j |Z,, QA12Z

2, + QAHZn 

QB12 = 0.025 - j(0.15?)     0.155 /-80.850  ■ 

The filters   jZ .|    are all found from   Z    ,   which is given by 

Z21 = QB,, - QB,2 = 0.235 . j(0.155) = 0.282/33.4° , 

and the noise-output power spectrum is found from   Eq.   (2)   to be 

QC,,= 2QB,,  iZ2,  
2 + 2Re lQB,2Z2^] = 0.205 . 

The above procedure is now repeated with the same filters but with signal 
cross-spectra in place of the noise cross-spectra. We have assumed that the 
signal is identical at each input; therefore, the input-signal cross-spectral 
density matrix, normalized with respect to   SA,,,   is 

SA 

1111 

1111 

1111 

1111 

11 



The elements  Sßn    and   SB12   are found from   Eqs.  (2) and (3)  with  SA,,, 
SA12,   SA,,,   and   SAU   replacing  QAn,   QA12,   QA^,   and  QA^, respec- 
tively.  They are 

and 

SB,, = 2SA,, \y.n\2 * 2Re (SA,/,* J     2.143 

SB,,     2SA,, ,/.,,' >SA12Z2
U . SA,/,;     2.143. 

Thus the matrix  SB   is determined. Equation (2) with the appropriate substitu- 
tions then yields the signal-output power spectrum as: 

SC,,     2SB,, |/.nl2 i 2Re[SB12/.'1l = 4.74 . 

sc 
G =—ii = 2}.l -- 13.6 db 

The array gain of the system is, therefore, 
S( 

Q' 1. 

The above sample calculation has showed an array gain of  13.6 db  for a 
four-element BAP system operating with a vertical array in a surface-generated 
noise field. Optimum processing under the same conditions would give an array 
gain of   19 db,   whereas conventional time-shift-and-sum beam formation would 
give less then   10 log10(4) = 6 db.   Thus, although the BAP system may not re- 
sult in as large an array gain as the optimum processor,  it still provides sig- 
nificantly higher gains than are obtainable by conventional methods. 

CONCLUSIONS 

A suboptimum approach to array processing has been described. The sys- 
tem, called a "binary array processor" (BAP), consists of a collection of many 
two-element subsystems The relative ease of BAP implementation (resulting 
from the fact that inversion of large matrices is not required) should compen- 
sate for the sacrifice of array gain. In addition, the BAP system should be less 
sensitive than the optimum processor to estimation errors in the noise cross- 
spectral densities because it adapts against such errors. 

12 

. 
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made in the statistical estimation of cross-spectral densities of the noise 
field because the system adapts against such errors.   These advantages are 
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